Preclinical Testing of a Vaccine Candidate against Tularemia
نویسندگان
چکیده
Tularemia is caused by a gram-negative, intracellular bacterial pathogen, Francisella tularensis (Ft). The history weaponization of Ft in the past has elevated concerns that it could be used as a bioweapon or an agent of bioterrorism. Since the discovery of Ft, three broad approaches adopted for tularemia vaccine development have included inactivated, live attenuated, or subunit vaccines. Shortcomings in each of these approaches have hampered the development of a suitable vaccine for prevention of tularemia. Recently, we reported an oxidant sensitive mutant of Ft LVS in putative EmrA1 (FTL_0687) secretion protein. The emrA1 mutant is highly sensitive to oxidants, attenuated for intramacrophage growth and virulence in mice. We reported that EmrA1 contributes to oxidant resistance by affecting the secretion of antioxidant enzymes SodB and KatG. This study investigated the vaccine potential of the emrA1 mutant in prevention of respiratory tularemia caused by Ft LVS and the virulent SchuS4 strain in C57BL/6 mice. We report that emrA1 mutant is safe and can be used at an intranasal (i. n.) immunization dose as high as 1x106 CFU without causing any adverse effects in immunized mice. The emrA1 mutant is cleared by vaccinated mice by day 14-21 post-immunization, induces minimal histopathological lesions in lungs, liver and spleen and a strong humoral immune response. The emrA1 mutant vaccinated mice are protected against 1000-10,000LD100 doses of i.n. Ft LVS challenge. Such a high degree of protection has not been reported earlier against respiratory challenge with Ft LVS using a single immunization dose with an attenuated mutant generated on Ft LVS background. The emrA1 mutant also provides partial protection against i.n. challenge with virulent Ft SchuS4 strain in vaccinated C57BL/6 mice. Collectively, our results further support the notion that antioxidants of Ft may serve as potential targets for development of effective vaccines for prevention of tularemia.
منابع مشابه
Current status of vaccine development for tularemia preparedness
Tularemia is a high-risk infectious disease caused by Gram-negative bacterium Francisella tularensis. Due to its high fatality at very low colony-forming units (less than 10), F. tularensis is considered as a powerful potential bioterrorism agent. Vaccine could be the most efficient way to prevent the citizen from infection of F. tularensis when the bioterrorism happens, but officially approved...
متن کاملConstructions of hepatitis C Virus prophylactic vaccine candidate using Berberis vulgaris stimulated and nonstructural protein 3 loaded dendritic cells
Introduction: Dendritic cells (DCs) have been recently employed as carriers for vaccines against several viral infections. The present study was designed to develop a prophylactic vaccine against hepatitis C virus (HCV) using DCs treated with Berberis vulgaris root extract (BRE), as a preclinical study. Methods: BRE was prepared and injected to female BALB/c mice for DCs expansion. The expanded...
متن کاملIdentification of a Live Attenuated Vaccine Candidate for Tularemia Prophylaxis
Francisella tularensis is the causative agent of a fatal human disease, tularemia. F. tularensis was used in bioweapon programs in the past and is now classified as a category A select agent owing to its possible use in bioterror attacks. Despite over a century since its discovery, an effective vaccine is yet to be developed. In this study four transposon insertion mutants of F. tularensis live...
متن کاملVaccination with the Live Attenuated Francisella novicida Mutant FTN0109 Protects against Pulmonary Tularemia
Francisella tularensis is considered a potential bioterrorism agent due to its low infectious dose, high mortality rate, and ability to be spread via the aerosol route. We characterized the F. tularensis subspecies novicida mutant strain FTN0109 as a potential vaccine candidate against tularemia. This strain, which lacks an outer membrane lipoprotein, is attenuated in vitro and in vivo, as it e...
متن کاملDiversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine.
The T lymphocyte antigens, which may have a role in protection against tularemia, were predicted by immunoinformatics analysis of Francisella tularensis Schu4. Twenty-seven class II putative promiscuous epitopes and 125 putative class I supertype epitopes were chosen for synthesis; peptides were tested in vitro for their ability to bind HLA and to induce immune responses from PBMCs of 23 previo...
متن کامل